Commutators

From Projective Geometric Algebra
Jump to navigation Jump to search

In geometric algebra, there are four commutator products defined as follows.

$$\mathbf a \mathbin{\unicode{x27D1}\kern{-0.2em}\unicode{x2212}\kern{-0.2em}\unicode{x27D1}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27D1}} \mathbf{\tilde b} - \mathbf b \mathbin{\unicode{x27D1}} \mathbf{\tilde a}\right)$$
$$\mathbf a \mathbin{\unicode{x27D1}\kern{-0.2em}\unicode{x2B}\kern{-0.2em}\unicode{x27D1}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27D1}} \mathbf{\tilde b} + \mathbf b \mathbin{\unicode{x27D1}} \mathbf{\tilde a}\right)$$
$$\mathbf a \mathbin{\unicode{x27C7}\kern{-0.2em}\unicode{x2212}\kern{-0.2em}\unicode{x27C7}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{b}} - \mathbf b \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{a}}\right)$$
$$\mathbf a \mathbin{\unicode{x27C7}\kern{-0.2em}\unicode{x2B}\kern{-0.2em}\unicode{x27C7}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{b}} + \mathbf b \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{a}}\right)$$

Commutators provide a way to formulate join and meet operations as well as Euclidean distances between different types of geometric objects. A commutator is also used to determine a new line containing the two closest points on a pair of skew lines.

See Also