# Commutators

$$\mathbf a \mathbin{\unicode{x27D1}\kern{-0.2em}\unicode{x2212}\kern{-0.2em}\unicode{x27D1}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27D1}} \mathbf{\tilde b} - \mathbf b \mathbin{\unicode{x27D1}} \mathbf{\tilde a}\right)$$
$$\mathbf a \mathbin{\unicode{x27D1}\kern{-0.2em}\unicode{x2B}\kern{-0.2em}\unicode{x27D1}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27D1}} \mathbf{\tilde b} + \mathbf b \mathbin{\unicode{x27D1}} \mathbf{\tilde a}\right)$$
$$\mathbf a \mathbin{\unicode{x27C7}\kern{-0.2em}\unicode{x2212}\kern{-0.2em}\unicode{x27C7}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{b}} - \mathbf b \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{a}}\right)$$
$$\mathbf a \mathbin{\unicode{x27C7}\kern{-0.2em}\unicode{x2B}\kern{-0.2em}\unicode{x27C7}} \mathbf b = \dfrac{1}{2}\left(\mathbf a \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{b}} + \mathbf b \mathbin{\unicode{x27C7}} \mathbf{\underset{\Large\unicode{x7E}}{a}}\right)$$