Difference between revisions of "Geometric property"
Eric Lengyel (talk | contribs) (Created page with "An element of a projective geometric algebra possesses the ''geometric property'' if and only if its bulk norm is a pure scalar and its weight norm is a pure ant...") |
Eric Lengyel (talk | contribs) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | An element of a projective geometric algebra possesses the ''geometric property'' if and only if | + | An element $$\mathbf a$$ of a projective geometric algebra possesses the ''geometric property'' if and only if the [[geometric product]] between $$\mathbf a$$ and its own reverse is a scalar, which is given by the [[dot product]], and the [[geometric antiproduct]] between $$\mathbf a$$ and its own antireverse is an antiscalar, which is given by the [[antidot product]]. That is, |
+ | |||
+ | :$$\mathbf a \mathbin{\unicode{x27D1}} \mathbf{\tilde a} = \mathbf a \mathbin{\unicode{x25CF}} \mathbf{\tilde a}$$ | ||
+ | |||
+ | and | ||
+ | |||
+ | :$$\mathbf a \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{a}}} = \mathbf a \mathbin{\unicode{x25CB}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{a}}}$$ . | ||
+ | |||
+ | The set of all elements possessing the geometric property is closed under both the [[geometric product]] and [[geometric antiproduct]]. | ||
+ | |||
+ | The following table lists the requirements that must be satisfied for the main types in the 4D projective geometric algebra $$\mathcal G_{3,0,1}$$ to possess the geometric property. Points and planes do not have any requirements—they all possess the geometric property. | ||
+ | |||
+ | {| class="wikitable" | ||
+ | ! Type !! Definition !! Requirement | ||
+ | |- | ||
+ | | style="padding: 12px;" | [[Magnitude]] | ||
+ | | style="padding: 12px;" | $$\mathbf z = x + y {\large\unicode{x1d7d9}}$$ | ||
+ | | style="padding: 12px;" | $$xy = 0$$ | ||
+ | |- | ||
+ | | style="padding: 12px;" | [[Point]] | ||
+ | | style="padding: 12px;" | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | ||
+ | | style="padding: 12px;" | — | ||
+ | |- | ||
+ | | style="padding: 12px;" | [[Line]] | ||
+ | | style="padding: 12px;" | $$\mathbf L = v_x \mathbf e_{41} + v_y \mathbf e_{42} + v_z \mathbf e_{43} + m_x \mathbf e_{23} + m_y \mathbf e_{31} + m_z \mathbf e_{12}$$ | ||
+ | | style="padding: 12px;" | $$v_xm_x + v_ym_y + v_zm_z = 0$$ | ||
+ | |- | ||
+ | | style="padding: 12px;" | [[Plane]] | ||
+ | | style="padding: 12px;" | $$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$ | ||
+ | | style="padding: 12px;" | — | ||
+ | |- | ||
+ | | style="padding: 12px;" | [[Motor]] | ||
+ | | style="padding: 12px;" | $$\mathbf Q = r_x \mathbf e_{41} + r_y \mathbf e_{42} + r_z \mathbf e_{43} + r_w {\large\unicode{x1d7d9}} + u_x \mathbf e_{23} + u_y \mathbf e_{31} + u_z \mathbf e_{12} + u_w$$ | ||
+ | | style="padding: 12px;" | $$r_xu_x + r_yu_y + r_zu_z + r_wu_w = 0$$ | ||
+ | |- | ||
+ | | style="padding: 12px;" | [[Flector]] | ||
+ | | style="padding: 12px;" | $$\mathbf G = s_x \mathbf e_1 + s_y \mathbf e_2 + s_z \mathbf e_3 + s_w \mathbf e_4 + h_x \mathbf e_{234} + h_y \mathbf e_{314} + h_z \mathbf e_{124} + h_w \mathbf e_{321}$$ | ||
+ | | style="padding: 12px;" | $$s_xh_x + s_yh_y + s_zh_z + s_wh_w = 0$$ | ||
+ | |} | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | * [[Geometric norm]] |
Latest revision as of 06:29, 9 November 2021
An element $$\mathbf a$$ of a projective geometric algebra possesses the geometric property if and only if the geometric product between $$\mathbf a$$ and its own reverse is a scalar, which is given by the dot product, and the geometric antiproduct between $$\mathbf a$$ and its own antireverse is an antiscalar, which is given by the antidot product. That is,
- $$\mathbf a \mathbin{\unicode{x27D1}} \mathbf{\tilde a} = \mathbf a \mathbin{\unicode{x25CF}} \mathbf{\tilde a}$$
and
- $$\mathbf a \mathbin{\unicode{x27C7}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{a}}} = \mathbf a \mathbin{\unicode{x25CB}} \smash{\mathbf{\underset{\Large\unicode{x7E}}{a}}}$$ .
The set of all elements possessing the geometric property is closed under both the geometric product and geometric antiproduct.
The following table lists the requirements that must be satisfied for the main types in the 4D projective geometric algebra $$\mathcal G_{3,0,1}$$ to possess the geometric property. Points and planes do not have any requirements—they all possess the geometric property.
Type | Definition | Requirement |
---|---|---|
Magnitude | $$\mathbf z = x + y {\large\unicode{x1d7d9}}$$ | $$xy = 0$$ |
Point | $$\mathbf p = p_x \mathbf e_1 + p_y \mathbf e_2 + p_z \mathbf e_3 + p_w \mathbf e_4$$ | — |
Line | $$\mathbf L = v_x \mathbf e_{41} + v_y \mathbf e_{42} + v_z \mathbf e_{43} + m_x \mathbf e_{23} + m_y \mathbf e_{31} + m_z \mathbf e_{12}$$ | $$v_xm_x + v_ym_y + v_zm_z = 0$$ |
Plane | $$\mathbf f = f_x \mathbf e_{234} + f_y \mathbf e_{314} + f_z \mathbf e_{124} + f_w \mathbf e_{321}$$ | — |
Motor | $$\mathbf Q = r_x \mathbf e_{41} + r_y \mathbf e_{42} + r_z \mathbf e_{43} + r_w {\large\unicode{x1d7d9}} + u_x \mathbf e_{23} + u_y \mathbf e_{31} + u_z \mathbf e_{12} + u_w$$ | $$r_xu_x + r_yu_y + r_zu_z + r_wu_w = 0$$ |
Flector | $$\mathbf G = s_x \mathbf e_1 + s_y \mathbf e_2 + s_z \mathbf e_3 + s_w \mathbf e_4 + h_x \mathbf e_{234} + h_y \mathbf e_{314} + h_z \mathbf e_{124} + h_w \mathbf e_{321}$$ | $$s_xh_x + s_yh_y + s_zh_z + s_wh_w = 0$$ |