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The concept of duality can be understood geometrically in an n-dimensional projective setting by consid-
ering both the subspace that an object occupies and the complementary subspace that the object concur-
rently does not occupy. The dimensionalities of these two components always sum to n, and they 
represent the space and antispace associated with the object.1 The example shown in Figure 1 demon-
strates the duality between homogeneous points and lines in a three-dimensional projective space. The 
triplet of coordinates ( ), ,x y zp p p  can be interpreted as a vector pointing from the origin toward a specific 
location on the projection plane 1z = . This vector corresponds to the one-dimensional space of the point 
that it represents. The dual of a point materializes when we consider all of the directions of space that are 
orthogonal to the single direction ( ), ,x y zp p p . As illustrated by the figure, these directions span an 
( )1n − -dimensional subspace that intersects the projection plane at a line when 3n = . In this way, the co-
ordinates ( ), ,x y zp p p  can be interpreted as both a point and a line, and they are duals of each other. 

 
Figure 1. The coordinates ( ), ,x y zp p p  can be interpreted as the one-dimensional span of a single vector representing 
a homogeneous point or as the ( )1n − -dimensional span of all orthogonal vectors representing a homogeneous hy-
perplane, which is a line when 3n = . Geometrically, these two interpretations are dual to each other, and their dis-
tances to the origin are reciprocals of each other. 

 When we express the coordinates ( ), ,x y zp p p  on the vector basis as 1 2 3x y zp p p+ +e e e , it explicitly 
states that we are working with a single spatial dimension representing a point, and the ambiguity is re-
moved. Similarly, if we express the coordinates on the bivector basis as 23 31 12x y zp p p+ +e e e , then we are 
working with the two orthogonal spatial dimensions representing a line. In each case, the subscripts of the 
basis elements tell us which basis vectors are present in the representation, and this defines the space of 
the object. The subscripts also tell us which basis vectors are absent in the representation, and this defines 
the antispace of the object. Acknowledging the existence of both the space and the antispace of any object 
and assigning equal meaningfulness to them allows us to explore the nature of duality to its fullest. A vec-
tor 1 2 3x y zp p p+ +e e e  is never only a point, but both a point and a line simultaneously, where the point 
exists in space, and the line exists in antispace. Likewise, a bivector 23 31 12x y zp p p+ +e e e  is never only a 

 
1 Antispace is also known as negative space or counterspace. 



line, but both a line and a point simultaneously, where the line exists in space, and the point exists in anti-
space. If we study only the spatial facet of these objects and their higher-dimensional counterparts, then 
we are missing half of a bigger picture. 
 It is particularly interesting to consider the Euclidean isometries that map n-dimensional space onto 
itself while preserving distances and angles. We know how each isometry transforms the space of a point, 
line, plane, etc., but for a complete understanding of the geometry, we must ask ourselves what happens to 
the antispace of those objects at the same time. Equivalently, when an object is transformed by an isome-
try, we would like to know how its dual is transformed. The answer requires that we first look at the in-
variants associated with each Euclidean isometry. 
 In the two-dimensional plane, the Euclidean isometries consist of a rotation about point, a translation 
in a specific direction, and a transflection with respect to a specific mirroring line. A reflection is a special 
case of transflection in which there is no motion parallel to the line, and translation is a special case of 
rotation in which the center lies in the horizon. Naturally, the invariant of a rotation is its center point, and 
the invariant of a transflection is its mirroring line. These objects are mapped onto themselves by their 
associated transforms, and this necessitates that their duals also be mapped onto themselves by whatever 
corresponding transforms occur in antispace. Because a rotation fixes its center point, the corresponding 
transform in antispace must fix the line that is dual to that point. And because a transflection fixes its mir-
roring line, the corresponding transform in antispace must fix the point that is dual to that line. These 
transforms occurring in antispace are projective analogs of the transforms occurring in space. There is a 
direct correspondence between the two transforms, and they are inextricably linked. Whenever one trans-
form is applied in space, the other is applied in antispace, and vice-versa. 
 Figure 2 shows a two-dimensional rotation transform and its projective analog. The green point repre-
sents the center of rotation, and the green line is the dual of that point. Under the regular rotation, the cen-
ter point is fixed, and under the projective rotation, the line dual to the center point is fixed. These are not, 
however, the only fixed geometries. A regular rotation also fixes the horizon line, and thus its dual, the 
origin, must be fixed in the projective rotation. This is illustrated by the red point in the figure, which is 
the focus of the various conic-section orbits. Here, the green line is the directrix. 
 Figure 3 shows a two-dimensional reflection transform and its projective analog. The green line rep-
resents the mirroring plane of the reflection, and the green point is the dual of that line. Under the regular 
reflection, the mirroring line is fixed, and under the projective reflection, the point dual to the mirroring 
line is fixed. As with rotation, there are additional fixed geometries under these transforms. A regular re-
flection fixes the point in the horizon in the direction perpendicular to the mirroring plane. The dual of 
this point is a line parallel to the mirroring line and containing the origin that remains fixed by the projec-
tive reflection. This is illustrated by the red line in the figure, which is clearly a reflection boundary in a 
sense. 
 Finally, Figure 4 shows a two-dimensional translation transform and its projective analog. As men-
tioned above, a translation is a special case of rotation in which the center lies in the horizon. As such, 
there is no finite fixed geometry that can be shown in the figure for a regular translation. However, the 
dual of the center in the horizon must be a line containing the origin that is fixed by the projective transla-
tion, and that is illustrated by the red line in the figure. Projective translation is especially important be-
cause it is the one to which we can most easily assign some practical meaning. It is a perspective 
projection onto the line through the origin perpendicular to the direction of translation. 



        
Figure 2. (Left) A regular rotation fixes the green center point at ( )1,0  and the horizon. (Right) The corresponding 
projective rotation fixes the green line at 1x = −  dual to the center point and the origin. 

 

 
Figure 3. (Left) A regular reflection fixes the green mirroring line at 1

2x = −  and the point in the horizon in the per-
pendicular direction. (Right) The corresponding projective reflection fixes the green point ( )2,0  dual to the mirror-
ing line and the line through the origin parallel to the mirroring line. 



 
Figure 4. (Left) A regular translation fixes the point in the horizon perpendicular to the direction of translation and 
every line parallel to the direction of translation. (Right) The corresponding projective translation (a perspective 
projection) fixes the line parallel to the direction of translation through the origin and every point in the line through 
the origin perpendicular to the direction of translation. 

 
 
 In the three-dimensional projective geometric algebra ( )2,0,1 , a homogeneous representation of 
two-dimensional space, a regular rotation about a center point c is given by 

 1 2 3x y zc c c r= + + +Q e e e 1, (1) 

and this becomes a translation when 0zc = . A regular transflection across the line h is given by 

 23 31 12x y zs h h h= + + +G e e e , (2) 

and this becomes a pure reflection when 0s = . Together, these operators include all possible Euclidean 
isometries in the two-dimensional plane. Under the geometric antiproduct ¦, arbitrary products of these 
operators form the group ( )2E  with 1 as the identity, and they covariantly transform any object a in the 
algebra through the sandwich products 

 a a′ =Q Q


¦ ¦    and   a a′ =G G


¦ ¦ . (3) 

Symmetrically, a projective rotation about the line c is given by 

 23 31 12x y zc c c r= + + −e e e , (4) 

and a projective transflection across the point h is given by 

 1 2 3x y zh h h s= + + −e e e 1 . (5) 



These two operators generate a different group of transformations under the geometric product ¥. Arbi-
trary products of these operators form the projective Euclidean group ( )2PE  with 1 as the identity, and 
they covariantly transform any object a in the algebra through the sandwich products 

 a a′ = ¥ ¥    and   a a′ = ¥ ¥ . (6) 

The groups ( )2E  and ( )2PE  are isomorphic, and they each contain the orthogonal group ( )2O  as a com-
mon subgroup. The complement operation provides a two-way mapping between transforms associated 
with members of ( )2E  and ( )2PE . 
 The invariant geometries of the four types of transforms described above are summarized in Table 1. 
The Euclidean isometries always fix a coinvariant contained in the horizon, and the corresponding projec-
tive transforms always fix a coinvariant containing the origin. In general, if x is the primary invariant of a 
Euclidean isometry, then the complement of the weight of x gives the coinvariant. Symmetrically, if x is 
the primary invariant of a projective transform, then the complement of the bulk of x gives the coinvari-
ant. When the primary invariant of a Euclidean isometry contains the origin, there is a corresponding pro-
jective transform that performs the same operation. Symmetrically, when the primary invariant of a 
projective transform is contained in the horizon, there is a corresponding Euclidean isometry that per-
forms the same operation. These are where ( )2E  and ( )2PE  intersect at ( )2O . 
 
 

Transform Primary Invariant Coinvariant 

Regular rotation 
1 2 3x y zc c c r= + + +Q e e e 1 

Point 1 2 3x y zc c c+ +e e e  Horizon line 12e  

Regular transflection 
23 31 12x y zs h h h= + + +G e e e  

Line 23 31 12x y zh h h+ +e e e  Point in horizon 1 2x yh h+e e  

Projective rotation 
23 31 12x y zc c c r= + + −e e e  

Line 23 31 12x y zc c c+ +e e e  Origin point 3e  

Projective transflection 
1 2 3x y zh h h s= + + −e e e 1  

Point 1 2 3x y zh h h+ +e e e  Line through origin 23 31x yh h+e e  

Table 1. These are the invariants of transforms occurring in the 3D projective geometric algebra representing the 2D 
plane. The primary invariant of any regular transform (a Euclidean isometry) or projective transform is given by the 
vector or bivector components of the operator itself. The coinvariant is given by the weight complement of the pri-
mary invariant in the case of regular transforms and by the bulk complement of the primary invariant in the case of 
projective transforms. 

 
 In the four-dimensional projective geometric algebra ( )3,0,1  representing three-dimensional space, 
every Euclidean isometry is either a screw transform Q or a rotoreflection G.2 The primary invariant of a 
screw transform is its bivector components, which corresponds to the line about which a rotation is taking 
place. A rotoreflection can have two primary invariants, one associated with its vector components and a 
second associated with its trivector components. These invariants, the invariants of the corresponding pro-
jective transforms, and the coinvariants for each are summarized in Table 2. 

 
2 The only geometrical difference between these is that the displacement along the rotation axis in a screw transform 
is replaced by a reflection in a plane perpendicular to the rotation axis in a rotoreflection. 



Transform Primary Invariants Coinvariants 

Regular screw transform 
41 42 43

23 31 12

x y z w

x y z w

r r r r
u u u u

= + + +

+ + + +

Q e e e
e e e

1
 

Line 
41 42 43 23 31 12x y z x y zr r r u u u+ + + + +e e e e e e   

Line in horizon 
23 31 12x y zr r r+ +e e e  

Regular rotoreflection 
1 2 3 4

234 314 124 321

x y z w

x y z w

s s s s
h h h h

= + + +

+ + + +

G e e e e
e e e e

 
Plane 234 314 124 321x y z wh h h h+ + +e e e e , 

Point 1 2 3 4x y z ws s s s+ + +e e e e  

Point in horizon 

1 2 3x y zh h h+ +e e e , 
Horizon 321e  

Projective screw transform 
41 42 43

23 31 12

x y z w

x y z w

u u u u
r r r r

= + + −

+ + + −

e e e
e e e

1
 

Line 
41 42 43 23 31 12x y z x y zu u u r r r+ + + + +e e e e e e  

Line through origin 
41 42 43x y zr r r+ +e e e  

Projective rotoreflection 
1 2 3 4

234 314 124 321

x y z w

x y z w

h h h h
s s s s

= + + +

+ + + +

e e e e
e e e e


 

Point 1 2 3 4x y z wh h h h+ + +e e e e , 
Plane 234 314 124 321x y z ws s s s+ + +e e e e  

Plane through origin 

234 314 124x y zh h h+ +e e e , 
Origin 4e  

Table 2. These are the invariants of transforms occurring in the 4D projective geometric algebra representing 3D 
space. The primary invariant of any regular transform (a Euclidean isometry) or projective transform is given by the 
vector, bivector, or trivector components of the operator itself. The coinvariants are given by the weight complement 
of each primary invariant in the case of regular transforms and by the bulk complement of each primary invariant in 
the case of projective transforms. 

 
 The unit-weight invertible elements of the ( )1n + -dimensional projective geometric algebra ( ),0,1n  
constitute a double cover of both the groups ( )E n  and ( )PE n . The geometric product corresponds to 
transform composition in the group ( )PE n , and the geometric antiproduct corresponds to transform com-
position in the group ( )E n . Regular reflections across planes are represented by antivectors (having anti-
grade one), and they meet at lower-dimensional invariants under the geometric antiproduct. 
Symmetrically, projective reflections across points are represented by vectors (having grade one), and 
they join at higher-dimensional invariants under the geometric product. A sandwich product 

 aQ Q¥ ¥  (7) 

transforms the space of a with an element of ( )PE n , and it transforms the antispace of a with the com-
plementary element of ( )E n . Symmetrically, a sandwich product 

 aQ Q


¦ ¦  (8) 

transforms the space of a with an element of ( )E n , and it transforms the antispace of a with the comple-
mentary element of ( )PE n . 
 The groups ( )E n  and ( )PE n  have a number of subgroups, and the hierarchical relationships among 
them are shown in Figure 5. In particular, the Euclidean group ( )E n  contains the special Euclidean sub-
group ( )SE n  consisting of all combinations of regular rotations, which are covered by the antigrade-2 
elements of ( ),0,1n . Correspondingly, the projective Euclidean group ( )PE n  contains the projective 
special Euclidean subgroup ( )PSE n  consisting of all combinations of projective rotations, which are cov-
ered by the grade-2 elements of ( ),0,1n . The subgroups ( )SE n  and ( )PSE n  further contain translation 
subgroups ( )T n  and ( )PT n , respectively. 



 
Figure 5. The unit-weight invertible elements of the projective geometric algebra ( ),0,1n  are a double cover of 
both the Euclidean group ( )E n  and the projective Euclidean group ( )PE n . Elements corresponding to transforms in 
( )E n  are composed with the geometric antiproduct, and elements corresponding to transforms in ( )PE n  are com-

posed with the geometric product. Transforms belonging to the common subgroup ( )O n  have two representations in 
( ),0,1n , one associated with the geometric product, and one associated with the geometric antiproduct. 

 
 Transforms about invariants containing the origin are the same in both ( )E n  and ( )PE n , and they 
constitute the common subgroup ( )O n . Every member of ( )O n  has a representation in ( ),0,1n  that 
transforms elements with the geometric product and a complementary representation that transforms ele-
ments with the geometric antiproduct. For example, in ( )3,0,1 , a conventional quaternion q can be ex-
pressed as 

 23 31 12x y z w= + + −q e e e 1, (9) 



which covariantly transforms any object a with the sandwich product aq q¥ ¥ , and it can be expressed as 

 41 42 43x y z w= + + +q e e e 1, (10) 

which covariantly transforms any object a with the sandwich product aq q


¦ ¦ . 
 In terms of matrix multiplication, a general element of the group ( )E n  transforms a point by multiply-
ing on the left by an ( ) ( )1 1n n+ × +  matrix of the form 

 1

1 1
n n n

n

× ×

×

 
 
 

m t
0

, (11) 

where the n n×  submatrix m is orthogonal. A general element of the corresponding group ( )PE n  trans-
forms points with matrices of the form 

 1

1 1
n n n

n

× ×

×

 
 
 

m 0
t

. (12) 

In the special subgroups of ( )E n  and ( )PE n , the submatrix m has a determinant of 1+ . In the translation 
subgroups ( )T n  and ( )PT n , m is the identity matrix. Finally, when =t 0, the matrices in Equations (11) 
and (12) have the same form and belong to ( )O n . 
 The isomorphic mapping between ( )E n  and ( )PE n  is given by the inverse transpose operation on the 
matrix representatives. That is, if M is an ( ) ( )1 1n n+ × +  matrix representing an element of ( )E n , then the 
corresponding element of ( )PE n  is given by ( )1 T−M . Of course, this operation is an involution, and the 
mapping works both ways. 
 


